Vitaliy Kurlin
Durham (Maths)
A fast and robust algorithm to count topologically persistent holes in noisy
clouds.
Preprocessing a 2D image often produces a noisy cloud of interest
points. We study the problem of counting holes in noisy clouds in the plane.
The holes in a given cloud are quantified by the topological persistence of
their boundary contours when the cloud is analysed at all possible scales.
We design the algorithm to count holes that are most persistent in the
filtration of offsets (neighbourhoods) around given points. The input is a
cloud of n points in the plane without any user-defined parameters. The
algorithm has a near linear time and a linear space. The output is the array
(number of holes, relative persistence in the filtration). We prove
theoretical guarantees when the algorithm finds the correct number of holes
(components in the complement) of an unknown shape approximated by a cloud.
The talk is based on the paper accepted at CVPR 2014 (Computer Vision and
Pattern Recognition). The final version is available at
http://kurlin.org/projects/counting-holes-in-noisy-clouds.pdf (1.4M).